Abstract
The tensile response of cubic silicon carbide (SiC) bulk containing cavities (voids and He bubbles) has been investigated using molecular dynamic simulations. The formation of cavities in SiC leads to a significant degradation in the mechanical properties of SiC with more influence on material fracture than initial elastic deformation. The brittle-to-ductile transition occurs in cavity-embedded SiC as the pressure in He bubbles increases. This is associated with the deformation mechanism that bond breaking at a low He bubble pressure transfers to extensive dislocation activities at a higher He bubble pressure. The cavities can effectively concentrate stress around them in the direction perpendicular to the tension, which leads to preferred cracking in the region with a higher tensile stress. The failure mechanism as revealed by this study improves understanding of property degradation in SiC that may be useful for applications of SiC in advanced nuclear energy systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.