Abstract
The lithiation mechanism of electrode materials is important for understanding the basic reactions in Li-ion batteries. In particular, zero-strain materials have garnered interest owing to their stable charge–discharge performances. In this study, we investigated the atomistic phase transition mechanism of spinel Li4Ti5O12, a well-known zero-strain material, using high-resolution transmission electron microscopy. A single-crystalline Li4Ti5O12 (100) specimen was prepared and observed in situ at a lattice resolution under electron-beam-assisted lithiation. The lattice fringes originating from the Li plane of the spinel crystal were anisotropically altered during phase transition, suggesting the asymmetrical site shifting of Li atoms during lithiation. This spontaneous symmetry-breaking mechanism for the phase transition is considered essential for the lithiation of spinel lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.