Abstract

SAPO-34 – a silicoaluminophosphate microporous material – has recently attracted a great attention in the field of sorption thermal storage, since it is characterized by good water adsorption behavior (i.e. type V adsorption isotherms) and low regeneration temperature (i.e. 80 °C, for instance available by standard solar thermal energy collectors). However, the nanoscale mechanisms of water transport and adsorption in the microporous framework of SAPO-34 cannot be fully unveiled by experiments alone. In this work, water adsorption onto SAPO-34 is for the first time studied by means of an atomistic model built upon experimental evidence. First, Monte Carlo simulations are employed to set up a convenient atomistic model of water/SAPO-34 interactions, and numerical adsorption isotherms are validated against experimental measures. Second, the validated model is used to study the water diffusion through SAPO-34 by molecular dynamics simulations, and to visualize preferential adsorption sites with atomistic detail. Such atomistic model validated against experiments may ease the investigation and in silico discovery of silicoaluminophosphates for thermal storage applications with tailored adsorption characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.