Abstract

Intravenous gallium nitrate therapy is a novel therapeutic strategy deployed to combat chronic Pseudomonas aeruginosa biofilm infections in the lungs of cystic fibrosis (CF) patients by interfering with iron (Fe3+) uptake. The therapy is a source of Ga3+, which competes with Fe3+ for siderophore binding, subsequently disrupting iron metabolism and inhibiting biofilm proliferation in vivo. It was recently demonstrated that the Pseudomonas quinolone signal (PQS) can chelate Fe3+ to assist in bacterial iron uptake. However, it is unknown whether exogenous gallium also targets [Fe(PQS)3] uptake, which, in turn, would extend the mechanism of gallium therapy beyond siderophore competition, potentially supporting use of the therapy against P. aeruginosa mutants deficient in siderophore uptake proteins. To that end, the thermodynamic feasibility of iron-for-gallium cation exchange into [Fe(PQS)3] was evaluated using quantum chemical density functional theory (DFT) modelling and verified experimentally using 1H nuclear magnetic resonance (NMR). We demonstrate here that Ga3+ can strongly bind to three PQS molecules and, furthermore, displace and substitute Fe3+ from the native chelate pocket within PQS complexes, through a Trojan horse mechanism, retaining the key structural features present within the native ferric complex. As such, [Fe(PQS)3] complexes, in addition to ferric-siderophore complexes, represent another target for gallium therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.