Abstract

The formation of Pt-Ru nanoclusters (NCs) by sequential deposition of Pt and Ru on a periodically rumpled graphene sheet supported on Ru(0001) is analyzed by atomistic-level modeling and kinetic Monte Carlo simulations. The "coarse-scale" periodic variation of the adsorption energy of metal adatoms across the graphene sheet directs the assembly of NCs to a periodic array of thermodynamically preferred locations. The modeling describes not only just the NC densities and size distributions, but also the composition distribution for mixed NCs. A strong dependence of these quantities on the deposition order is primarily related to different effective mobilities of Pt and Ru on the supported graphene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.