Abstract
Many applications, ranging from neural prosthetics and cardiac rhythm management systems to organics-based flexible display, can benefit from the engineering of parylene-metal-parylene structures via selective deposition. Despite several experimental studies, the mechanism responsible for this selective deposition is not clear and is the subject of the current paper. Towards this goal, we used the quantum semiempirical Hamiltonian (QSH) solver coupled to a molecular dynamic (MD) model, which is particularly suited to study parylene-metal interactions due to its ability to determine the different pathways of the transformations involving making and breaking of chemical and physical bonds. The simulation results of selective deposition of various parylene chains on titanium dioxide and gold surfaces are presented. Time-dependent bond orders were used to quantify the deposition process. The mechanism of metal atom adhesion to parylene was also discussed to provide insights into the formation of defects in metal/parylene interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.