Abstract

Understanding the temperature-dependent yield strength of Ni-based single crystal superalloys is of great significance for their microstructural design and engineering applications. In this Communication, from an atomistic perspective, the yield strength of a Ni-based single crystal superalloy varying with temperature, especially at extremely low (−272 °C) and high (1227 °C) temperatures, has been investigated. The atomic-scale mechanisms are elaborated by extracting several types of dislocation activities at various temperatures. The anomalous behavior of yield strength dominated by the atomic-scale dislocation evolution is visualized in Ni-based single crystal superalloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.