Abstract

Concentrated solid solution alloys (CSAs) have attracted attention for their promising properties; however, current manufacturing methods face challenges in complexity, high costs, and limited scalability, raising concerns about industrial viability. The prevalent technique, arc melting, yields high-purity samples with complex shapes. In this study, we explore nanoindentation tests at room temperature where arc-melted samples exhibit larger grain sizes, diminishing the effects of grain boundaries on the results. Motivated by these findings, our investigation focuses on the atomistic-level exploration of plasticity mechanisms, specifically dislocation nucleation and propagation during nanoindentation tests. The intricate chemistry of NiFeCrCo CSA influences pile-ups and slip traces, aiming to elucidate plastic deformation by considering both pristine and pre-existing stacking fault tetrahedra. Our analysis scrutinizes dynamic deformation processes, defect nucleation, and evolution, complemented by stress–strain and dislocation densities–strain curves illustrating the hardening mechanism of defective materials. Additionally, we examine surface morphology and plastic deformation through atomic shear strain and displacement mappings. This integrated approach provides insights into the complex interplay between the material structure and mechanical behavior, paving the way for an enhanced understanding and potential advancements in CSA applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call