Abstract

Mitochondrial cytochrome c oxidase couples the reduction of oxygen to proton pumping. Despite an overall good understanding of its molecular mechanism, the role of cardiolipin in protein function is not understood. Here, we have studied the cardiolipin-protein interactions in a dynamic context by means of atomistic molecular dynamics simulations performed on the entire structure of monomeric and dimeric forms of the enzyme. Several microseconds of simulation data reveal that the crystallographic cardiolipin molecules that glue two monomers together bind weakly in hybrid and single-component lipid bilayers and dissociate rapidly. Atomistic simulations performed in the absence of tightly bound cardiolipin molecules strongly perturb the structural integrity of subunits III and VIIa, thereby highlighting an indispensable nature of lipid-protein interactions in enzyme function such as proton uptake and oxygen channeling. Our results demonstrate the strength of molecular simulations in providing direct atomic description of lipid-protein processes that are difficult to achieve experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.