Abstract

Green, stable, and wide electrochemical window deep eutectic solvents (DESs) are ideal candidates for electrochemical systems. However, despite several studies of their bulk properties, their structure and properties under electrified confinement have barely been investigated, which has hindered widespread use of these solvents in electrochemical applications. In this Letter, we explore the electrical double layer structure of 1:2 choline chloride-urea (Reline), with a particular focus on the electrosorption of the hydrogen bond donor on a graphene electrode using atomistic molecular dynamics simulations. We discovered that the interface is composed of a mixed layer of urea and counterions followed by a mixed charged clustered structure of all of the Reline components. This interfacial structuring is strongly dependent on the balance between intermolecular interactions and surface polarization. These results provide new insights into the electrical double layer structure of a new generation of electrolytes whose interfacial structure can be tuned at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.