Abstract

Atomistic formulas are derived for the local densities and fluxes used in the continuum description of energy and momentum transport. Two general methods for the distribution of potential energy among a system's constituent particles are presented and analyzed. The resulting formulas for the heat flux and stress tensor and the equations for energy and momentum transport are exact consequences of the definitions of the densities and the equations of classical mechanics. The formulas and equations obtained are valid for systems with very general types of many-body interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.