Abstract

Surface plays an important role in the physical and mechanical behavior of nanostructured materials and elements, however surface energy of curved solid surfaces has not been fully understood. In the present letter, surface energy of spherical particles and cavities in FCC copper is calculated by embedded atom method. The numerical simulations reveal that the distribution of atom energy is non-uniform on the curved surfaces. However, when the radius of spherical cavity or particle is larger than 4 nm, the average surface energy density keeps almost constant irrespective of its location and radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.