Abstract
This paper describes atomistic simulations of deformation and fracture of Al reinforced with carbon nanotubes (CNTs). We use density functional theory (DFT) to understand the energetics of Al-graphene interfaces and gain reference data for the parameterization of Al-C empirical potentials. We then investigate the load transfer between CNTs and Al and its effect on composite strengthening. To this end, we perform uniaxial tensile simulations of an Al crystal reinforced by CNTs of various volume fractions. We also study the interaction of the embedded CNTs with a crack. We show that the interaction between CNTs and Al is weak such that, under tensile loading, CNTs can easily slide inside the Al matrix and get pulled out from the cracked surface. This effect is almost independent of CNT length and volume fraction. Little load transfer and consequently no crack bridging are observed during the simulation of pristine CNTs threading the crack surfaces. CNTs that are geometrically fixated inside Al, on the other hand, can increase the fracture stress and enhance plastic dissipation in the matrix. CNTs located in front of a growing crack pin the crack and induce plastic deformation of the Al matrix. Depending on the CNT orientation, these processes can either increase or decrease the failure stress of the composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.