Abstract

AbstractA Mo-rich precipitate in an Fe-rich matrix and the heterophase interface bounding the precipitate have been examined on an atomic scale by three-dimensional atom-probe (3DAP) microscopy and transmission electron microscopy (TEM). The Mo-rich precipitate was generated by isothermal solid-state decomposition at 500°C of an Fe-15 at.% Mo-5 at.% V alloy. After this heat treatment, TEM reveals a characteristic modulated strain contrast structure. The precipitate has a composition of Mo-13.0 at.% Fe-4.9 at.% V as measured by 3DAP microscopy. The alloy decomposes at a nearly constant 5 at.% V, constituting a metastable tie-line between Fe-rich and Mo-rich bcc solid solutions. The formation of the equilibrium intermetallic phases is kinetically impeded. A local vanadium enrichment of 21 at.% is detected at the interface of the precipitate in a matrix region about 0.27 nm or 1–2 atomic layers in thickness. The corresponding value of the Gibbsian interfacial excess of vanadium is 3.3 ± 1.3 nm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.