Abstract

Selective laser melting (SLM) provides a promising alternative to overcome the size and geometry limitation in the fabrication of metallic glasses (MGs). Understanding the change of atomic-scale structure is vital to glass formation and the properties of SLM-fabricated MGs. In this work, atomic structural evolution of Cu50Zr50 MG fabricated by SLM was investigated using molecular dynamics simulations. Voronoi tessellation analysis indicates that icosahedron-like clusters and Frank-Kasper polyhedra are dominant in cladding and deposited layers. In addition, the fractions of populous icosahedron-like clusters decrease in molten pool while slightly increase in heat affected zone during SLM process, and the fractions of populous Frank–Kasper polyhedra remain virtually unchanged after laser melting and heat affecting. This work provides a necessary understanding and novel guidance to the fabrication of MGs using SLM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.