Abstract

AbstractSubstitutional doping of graphene by impurity atoms such as boron and nitrogen, followed by atom‐by‐atom manipulation via scanning transmission electron microscopy, can allow for accurate tailoring of its electronic structure, plasmonic response, and even the creation of single atom devices. Beyond the identification of individual dopant atoms by means of “Z contrast” imaging, spectroscopic characterization is needed to understand the modifications induced in the electronic structure and plasmonic response. Here, atomic scale spectroscopic imaging in the extreme UV‐frequency band is demonstrated. Characteristic and energy‐loss‐dependent contrast changes centered on individual dopant atoms are highlighted. These effects are attributed to local dopant‐induced modifications of the electronic structure and are shown to be in excellent agreement with calculations of the associated densities of states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.