Abstract

Plasma assisted polishing (PAP), in which the irradiation of atmospheric pressure water vapor plasma and ceria (CeO2) abrasive polishing are combined, is a novel finishing technique for single-crystal silicon carbide (4H-SiC). An atomically flat 4H-SiC surface (rms about 0.2nm) with a well-ordered step/terrace structure was obtained by PAP. Cross-sectional transmission electron microscopy (XTEM) observation revealed that plasma oxidation atomically flattened the interface of SiO2/SiC. Angle-resolved X-ray photoelectron spectroscopy (ARXPS) measurement results showed the existence of a thin silicon oxycarbide layer, which is corrosion-resistant to hydrofluoric acid, at the interface. The combination of water vapor plasma oxidation and the mechanical removal of silicon oxide as well as silicon oxycarbide layers by a soft abrasive is effective in obtaining an atomically flat surface of 4H-SiC (0001) without introducing crystallographic subsurface damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.