Abstract

The "delocalization" of inelastic scattering is an important issue for the ultimate spatial resolution of innershell spectroscopy in the electron microscope. It is demonstrated in a nonlocal model for electron energy loss spectroscopy (EELS) that delocalization of scanning transmission electron microscopy (STEM) images for single, isolated atoms is primarily determined by the width of the probe, even for light atoms. We present experimental data and theoretical simulations for Ti L-shell EELS in a [100] SrTiO3 crystal showing that, in this case, delocalization is not significantly increased by dynamical propagation. Issues relating to the use of aberration correctors in the STEM geometry are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.