Abstract
An understanding of electrochemical dynamics at solid-liquid interfaces is essential to develop advanced batteries and fuel cells and so on. For example, an atomic-level understanding of electrochemical Pt dissolution and redeposition behavior is crucial for optimizing the material design and operating conditions of polymer electrolyte fuel cells (PEFCs). This understanding enables the prevention of the degradation of Pt nanoparticles used as electrocatalysts. However, the mechanisms of Pt dissolution and redeposition are still not fully understood due to the lack of spatial resolution available with current observation techniques. Here, we have revealed for the first time atomic-level electrochemical Pt dissolution and redeposition behavior using in-house-developed observation techniques. We achieved atomic-level observations of closed-cell type liquid electrochemical transmission electron microscopy (TEM) by combining in-house-developed microelectromechanical system (MEMS) chips as an electrochemical cell, an aberration-corrected TEM apparatus, and an energy filter. Furthermore, accurate and stable potential control was achieved using an in-house-developed reversible hydrogen electrode (RHE) with a liquid junction connected to the outside of a TEM specimen holder. Our observation results confirmed that Pt dissolves from surface step edges layer-by-layer, as previously predicted by the density functional theory (DFT). The observation techniques developed are also applicable to other research fields concerning electrochemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.