Abstract
AbstractAtomically thin 2D materials are good templates to grow organic semiconductor thin films with desirable features. However, the 2D materials typically exhibit surface roughness and spatial charge inhomogeneity due to nonuniform doping, which can affect the uniform assembly of organic thin films on the 2D materials. A hybrid template is presented for preparation of highly crystalline small‐molecule organic semiconductor thin film that is fabricated by transferring graphene onto a highly ordered self‐assembled monolayer. This hybrid graphene template has low surface roughness and spatially uniform doping, and it yields highly crystalline fullerene thin films with grain sizes >300 nm, which is the largest reported grain size for C60 thin films on 2D materials. A graphene/fullerene/pentacene phototransistor fabricated directly on the hybrid template has five times higher photoresponsivity than a phototransistor fabricated on a conventional graphene template supported by a SiO2 wafer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.