Abstract
The generation of extensive 2D periodic patterns of point defects in 2D materials, such as vacancy lattices, has been a challenging task until now. Here, we report on 2D transition metal dihalides grown epitaxially on Au(111) featuring periodically assembled halogen vacancies that result in alternating coordination of the transition metal ion and can function as antidot lattices. [1] Using low-temperature STM/ncAFM and LEED, we identified the structural properties of intrinsically patterned FeBr2 and CoBr2 monolayers grown epitaxially on Au(111). Density-functional theory indicates that Br-vacancies are favored due to low formation energies, and the formation of a vacancy lattice substantially reduces the lattice mismatch with the underlying Au(111). We demonstrate that interfacial strain engineering presents a versatile strategy for controlled patterning in 2D with atomic precision over several hundred nanometers to solve a longstanding challenge of growing atomically precise antidot lattices.[1] https://doi.org/10.48550/arXiv.2305.06489
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.