Abstract

Gold and silver nanoclusters (NCs) composed of <200 atoms are novel catalysts because their catalytic properties differ significantly from those of the corresponding bulk surface and can be dramatically tuned by the size (number of atoms). Doping with other metals is a promising approach for improving the catalytic performance of Au and Ag NCs. However, elucidation of the origin of the doping effects and optimization of the catalytic performance are hampered by the technical challenge of controlling the number and location of the dopants. In this regard, atomically precise Au or Ag (Au/Ag) NCs protected by ligands or polymers have recently emerged as an ideal platform because they allow regioselective substitution of single Au/Ag constituent atoms while retaining the size and morphology of the NC. Heterogeneous Au/Ag NC catalysts doped with a single atom can also be prepared by controlled calcination of ligand-protected NCs on solid supports. Comparison of thermal catalysis, electrocatalysis, and photocatalysis between the single-atom-doped and undoped Au/Ag NCs has revealed that the single-atom doping effect can be attributed to an electronic or geometric origin, depending on the dopant element and position. This minireview summarizes the recent progress of the synthesis and catalytic application of single-atom-doped, atomically precise Au/Ag NC catalysts and provides future prospects for the rational development of active and selective metal NC catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.