Abstract

By introducing high-purity and low-temperature Ar annealing at 850 °C, atomically flat Si surfaces of silicon-on-insulator (SOI) and shallow-trench-isolation (STI)-patterned wafers were obtained. In the case of the STI-patterned wafer, this low-temperature annealing and subsequent radical oxidation to form a gate oxide film were introduced into the complementary metal oxide semiconductor (CMOS) process with 0.22 µm technology. As a result, a test array circuit for evaluating the electrical characteristics of a very large number (>260,000) of metal oxide semiconductor field effect transistors (MOSFETs) having an atomically flat gate insulator/Si interface was successfully fabricated on a 200-mm-diameter wafer. By evaluating 262,144 nMOSFETs, it was found that not only the gate oxide reliability was improved, but also the noise amplitude of the gate–source voltage related to the random telegraph noise (RTN) was reduced owing to the introduction of the atomically flat gate insulator/Si interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.