Abstract

Defect engineering is a key chemical tool to modulate the electronic structure and reactivity of nanostructured catalysts. Here, it is reported how targeted introduction of defect sites in a 2D palladium metallene nanostructure results in a highly active catalyst for the alkaline oxygen reduction reaction (ORR). A defect-rich WOx and MoOx modified Pd metallene (denoted: D-Pd M) is synthesized by a facile and scalable approach. Detailed structural analyses reveal the presence of three distinct atomic-level defects, that are pores, concave surfaces, and surface-anchored individual WOx and MoOx sites. Mechanistic studies reveal that these defects result in excellent catalytic ORR activity (half-wave potential 0.93V vs. RHE, mass activity 1.3AmgPd-1 at 0.9 V vs. RHE), outperforming the commercial references Pt/C and Pd/C by factors of ≈7 and ≈4, respectively. The practical usage of the compound is demonstrated by integration into a custom-built Zn-air battery. At low D-Pd M loading (26µgPdcm-2), the system achieves high specific capacity (809mAhgZn -1) and shows excellent discharge potential stability. This study therefore provides a blueprint for the molecular design of defect sites in 2D metallene nanostructures for advanced energy technology applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.