Abstract

Ultrasensitively selective detection of trace polycyclic aromatic hydrocarbons (PAHs) like phenanthrene (PHE) is critical but remains challenging. Herein, atomically dispersed Zn sites on g-C3 N4 nanosheets (sZn-CN) are constructed by thermal polymerization of a Zn-cyanuric acid-melamine supramolecular precursor for the fluorescence detection of PHE. A high amount (1.6 wt%) of sZn is grafted in the cave of CN with one N vacancy in the form of unique Zn(II)N5 coordination. The optimized sZn-CN achieves a wide detection range (1 ng L-1 to 5 mg L-1 ), ultralow detection limit (0.35 ng L-1 , with 5-order magnitude improvement over CN), and ultrahigh selectivity toward PHE even among typical PAHs based on the built PHE-CN dual ratiometric fluorescence method. By means of in situ Fourier transform infrared spectroscopy, time-resolved absorptionand fluorescence spectroscopy, and theoretical calculations, the resulting superior detection performance is attributed to the favorable selective adsorption of PHE on as-constructed atomic Zn(II)N5 sites via the ionic cation-π interactions (Znδ+ C2 δ- type), and the fluorescence quenching is dominated by the inner filter effect (IFE) from the multilayer adsorption of PHE at low concentrations, while it is done by the protruded photogenerated electron-transfer process, as well as IFE from the monolayer adsorption of PHE at ultralow concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call