Abstract

Constructing the desired long-range dual sites to enhance the C–C bond-cleavage and CO-tolerate ability during ethanol oxidation reaction (EOR) is of importance for further applications. Herein, the concept of holding atomically dispersed NiOx cluster supported on Pt-based high-index facets (NiNiOx/Pt) is proposed to build O-bridged Pt–Ni dual sites. Strikingly, the obtained NiOx/Pt dual sites show 4.97 times specific activity higher than that of commercial Pt/C (0.35 mA cm-2), as well as outstanding CO-tolerance and durability. The advanced electrochemical in-situ characterizations reveal that the NiOx/Pt can accelerate rapid dehydroxylation and C–C bond-cleavage over the Pt–Ni dual sites. Theoretical calculations disclose that the atomically dispersed NiOx species can lower the adsorption/reaction energy barriers of intermediates. This tactic provides a promising tactic and methodology on regulating the surface synergistic sites via engineering atomically dispersed oxide site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.