Abstract

Electrochemical CO2 reduction (ECR) is recognized as a sustainable and promising approach for the production of high-value chemicals. To facilitate widespread application of this technology, the design and construction of efficient cathodic electrocatalysts is critically important. Here we report the synthesis of atomically dispersed manganese on nitrogen-doped porous carbon (Mn SAs/NC) using a facile and scalable annealing method for catalyzing the ECR reaction. The as-obtained Mn SAs/NC delivers high activity and selectivity toward CO formation with a faradaic efficiency of 80.5±0.6%, over 5 times that of bare NC. The high activity is preserved even after 10 h of continuous polarization. The catalytic properties of our cost-effective Mn SAs/NC catalyst are readily tuned by regulating the nitrogen configurations and the percentage of Mn SAs via modulation of the nitrogen precursor and the thermal treatment conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.