Abstract
A encapsulation-adsorption-pyrolysis strategy for the construction of atomically dispersed Co-Te diatomic sites (DASs) that are anchored in N-doped carbon is reported as an efficient bifunctional catalyst for electrocatalytic hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The as-constructed catalyst shows the stable CoN3 C1 -TeN1 C3 coordination structure before and after HER and ORR. The *OOH/*H intermediate species are captured by in situ Raman and in situ attenuated total reflectance-surface enhanced infrared absorption spectroscopy, indicating that the reactant O2 /H2 O molecule has a strong interaction with the Co site, revealing that Coδ+ is an effective active site. Theoretical calculations show that the Coδ+ has adsorption-activation function and the neighboring Teδ+ acts as an electron donor adjusting the electronic structure of Coδ+ , promoting the dissociation of H2 O molecules and the adsorption of H and oxygen-containing intermediates in HER and ORR. In the meanwhile, the nearest C atom around Co also profoundly affects the adsorption of H atoms. This results in the weakening of the OH adsorption and enhancement of H adsorption, as well as the more stable water molecule dissociation transition state, thus significantly boosting ORR and HER performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.