Abstract

The conformational space of the 10-55 fragment of the B-domain of staphylococcal protein A has been investigated by using the electrostatically driven Monte Carlo (EDMC) method. The ECEPP/3 (empirical conformational energy program for peptides) force-field plus two different continuum solvation models, namely SRFOPT (Solvent Radii Fixed with atomic solvation parameters OPTimized) and OONS (Ooi, Oobatake, Némethy, and Scheraga solvation model), were used to describe the conformational energy of the chain. After an exhaustive search, starting from two different random conformations, three of four runs led to native-like conformations. Boltzmann-averaged root-mean-square deviations (RMSD) for all of the backbone heavy atoms with respect to the native structure of 3.35 A and 4.54 A were obtained with SRFOPT and OONS, respectively. These results show that the protein-folding problem can be solved at the atomic detail level by an ab initio procedure, starting from random conformations, with no knowledge except the amino acid sequence. To our knowledge, the results reported here correspond to the largest protein ever folded from a random conformation by an initial-value formulation with a full atomic potential, without resort to knowledge-based information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.