Abstract

One of the main requirements for Si-based ultrasmall device is atomic-order control of process technology. Here, we show the concept of atomically controlled processing for group IV semiconductors based on atomic-order surface reaction control in Si-based CVD epitaxial growth. Self-limiting formation of 1-3 atomic layers of group IV or related atoms in the thermal adsorption and reaction of hydride gases on Si(100) and Ge(100) are generalized based on the Langmuir-type model. Moreover, Si or Si1-xGex epitaxial growth over N, P or C layer already-formed on Si(100) or Si1-xGex(100) surface is achieved and the capability of atomically controlled processing for advanced devices is demonstrated. Additionally, the strain control of the Si1-xGex/Si heterostructure due to stripe patterning is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.