Abstract

Aqueous Zn metal batteries are promising candidates for large-scale energy storage due to their intrinsic advantages. However, Zn tends to deposit irregularly and forms dendrites driven by the uneven space electric field distribution near the Zn-electrolyte interphase. Herein it is demonstrated that trace addition of Co single atom anchored carbon (denoted as CoSA/C) in the electrolyte regulates the microspace electric field at the Zn-electrolyte interphase and unifies Zn deposition. Through preferential adsorption of CoSA/C on the Zn surface, the atomically dispersed Co-N3 with strong charge polarization effect can redistribute the local space electric field and regulate ion flux. Moreover, the dynamic adsorption/desorption of CoSA/C upon plating/stripping offers sustainable long-term regulation. Therefore, Zn||Zn symmetric cells with CoSA/C electrolyte additive deliver stable cycling up to 1600h (corresponding to a cumulative plated capacity of 8 Ah cm-2 ) at a high current density of 10mA cm-2 , demonstrating the sustainable feature of microspace electric field regulation at high current density and capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call