Abstract
A method for tomographic imaging of molecular orbitals—based on the alignment of molecules in the laboratory frame and linearly polarized laser fields—has now been extended to atoms, which cannot be naturally aligned. Strong-field light–matter interactions can encode the spatial properties of the electronic wavefunctions that contribute to the process1,2,3,4. In particular, the broadband harmonic spectra, measured for a series of molecular alignments, can be used to create a tomographic reconstruction of molecular orbitals5. Here, we present an extension of the tomography approach to systems that cannot be naturally aligned. We demonstrate this ability by probing the two-dimensional properties of atomic wavefunctions. By manipulating an electron–ion recollision process6, we are able to resolve the symmetry of the atomic wavefunction with high contrast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.