Abstract

Variegation and complexity of polarization relaxation loss in many heterostructured materials provide available mechanisms to seek a strong electromagnetic wave (EMW) absorption performance. Here we construct a unique heterostructured compound that bonds α-Fe2O3 nanosheets of the (110) plane on carbon microtubes (CMTs). Through effective alignment between the Fermi energy level of CMTs and the conduction band position of α-Fe2O3 nanosheets at the interface, we attain substantial polarization relaxation loss via novel atomic valence reversal between Fe(III) ↔ Fe(III-) induced with periodic electron injection from conductive CMTs under EMW irradiation to give α-Fe2O3 nanosheets. Such heterostructured materials possess currently reported minimum reflection loss of -84.01 dB centered at 10.99 GHz at a thickness of 3.19 mm and an effective absorption bandwidth (reflection loss ≤ -10 dB) of 7.17 GHz (10.83-18 GHz) at 2.65 mm. This work provides an effective strategy for designing strong EMW absorbers by combining highly efficient electron injection and atomic valence reversal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call