Abstract

The kinetic theory of isothermal atomic transport via point defects that was presented in two previous papers (Franklin, A. D. & Lidiard, A. B. Proc. R. Soc. Lond . A 389, 405–431 (1983) and Franklin, A. D. & Lidiard, A. B. Proc. R. Soc. Lond . A 392, 457–473 (1984)) has been expanded into a three-dimensional formulation to analyse transport in an applied non-uniform stress field. The fluxes of the various defect species take the general form familiar from non-equilibrium thermodynamics, while the contribution to the force on defect species Y arising from the stress σ αβ is confirmed to be v ∇(λ (Y) αβ σ αβ ), where v is the molecular volume of the solid and λ (Y) αβ is the elastic-dipole strain tensor of the defect species Y (summation over repeated Cartesian indices α, β is here assumed). Full details of these calculations are presented in Lidiard, A. B. A. E. R. E. Rep . no R. 11367 (1984).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call