Abstract
Isotropic and anisotropic atomic transport in an ion beam mixed Pd/Co bilayer have been studied from the shifts of a marker layer in Rutherford backscattering spectroscopy. A thin layer of Au (1 nm) was embedded as a marker at the interface between Pd and Co layers. 80 keV Ar + was used to irradiate the marker sample at 90K. The Pd/Co system shows near isotropic atomic transport ( J Pd/ J Co = 0.86) due to the thermal spike effect. We present a simple relationship between the ration of atomic fluxes induced by ion mixing and the activation energies for the normal impurity diffusion of constituents in a bilayer to describe quantitatively the isotropic and anisotropic atomic transport in thermal spike induced ion mixing. Thermal spike induced atomic transport is closely related with the activation energy for normal impurity diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.