Abstract

The atomic structures of Zr-Ni and Zr-Ti-Al-Cu-Ni metallic glasses were investigated by using classical molecular dynamic (MD), reverse Monte Carlo (RMC), ab initio MD (AIMD) simulations and high resolution transmission electron microscopy (HRTEM) techniques. We focused on the short-range order (SRO) and medium-range order (MRO) in the glassy structure. It is shown that there are icosahedral, FCC-and BCC-type SROs in the Zr-based metallic glasses. A structural model, characterized by imperfect ordered packing (IOP), was proposed based on the MD simulation and confirmed by the HRTEM observation. Furthermore, the evolution from IOP to nanocrystal during the crystallization of metallic glasses was also explored. It is found that the growth from IOP to nanocrystal proceeds through three distinct stages: the formation of quasi-ordered structure with one-dimensional (1D) periodicity, then 2D periodicity, and finally the formation of 3D nanocrystals. It is also noted that these three growth steps are crosslinked.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call