Abstract

By combining high-resolution electron microscopy and atomistic simulations, the atomic structures of several interfaces, {5 1 0}, {2 3 0} and {8 1 0}/{7 4 0}, in germanium and in silicon Σ = 13 [0 0 1] tilt grain boundaries (TGBs) are studied using bicrystals prepared in two different ways from the melt. The interfaces are characterized by either transmission electron microscopy or scanning transmission electron microscopy (STEM). The Si TGB shows only one interface, {1 5 0} with one interfacial structure. The Ge TGB contains many facets. In Ge, observations performed in two perpendicular directions, [0 0 1] and [ 5 0], confirm that the {5 1 0} interface has two different structures. One structure, called M-structure, is periodic along [0 0 1] and has tetracoordinated atoms. The other structure, called U-structure, is more peculiar as it contains a fixed part surrounding a variable complex core. High-resolution STEM, realised in modern microscopes equipped with a probe Cs-corrector, is a very effective technique for structure determination of grain boundaries (GBs). However, current limitations for high-resolution study of GBs are the structural changes under the electron beam and the limited number of crystallographic axes suitable for atomic-resolution imaging. The structures of GB atomistic models can be ordered according to their calculated energies. It appears that energies calculated using empirical potentials, like Tersoff or Stillinger-Weber potentials, do not give the same classification as ab initio calculations and cannot be used to determine the structure of lowest energy. This structure is the M-structure, the structure observed in the Si bicrystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.