Abstract

Abstract High resolution transmission electron microscopy is used to study the atomic structure of a Σ7 grain boundary (Σ is equal to the reciprocal of the fraction of lattice sites in coincidence) in Al2O3. This grain boundary in Al2O3 has misorientation [0111]/180°. The grain boundary plane is (0112)1∥(0112)2. Four possible unrelaxed grain boundary structures can be constructed from the constrained coincidence-sitelattice (CCSL) patterns. The atomic structure of the boundary is determined from a through-focal series of high resolution images and computer image simulation. A DSC dislocation in the Σ7 grain boundary was identified. The Burgers vector of this dislocation is 1/14[0552] and it is a pure edge dislocation. Most of the boundary has a structure comprising oxygen terminating layers with an identical width of 0·135 nm, known as the α-domain. There are no unsaturated Al-O bonds in the boundary core of the a domain, but the Al-O bonds are slightly elongated. Coexistence of two interfacial domains, α...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call