Abstract

We examine several different reconstructions of the β-SiC(100) surface by the ab initio Car-Parrinello method. Our results confirm that the lowest energy c(2 × 2) reconstructed surface consists of triply bonded carbon dimers in a bridging position between neighboring underlying silicon dimers. Added hydrogen atoms bond to the carbon dimers, resulting in a lengthened double-bonded dimer, and a larger separation for the underlying silicon dimers, although those Si bonds do not disappear. The most stable structure found for the (3 × 2) reconstructed surface with a 1/3 monolayer excess of silicon is an alternate dimer row structure rather than the added dimer row model proposed by others. The energetics of various surface reactions that may be involved in growth of SiC are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.