Abstract

The influence of plasma screening on the excitation energies and transition properties of He-like Ni26+ ion under strongly coupled plasma background has been analyzed. To perform the analysis, the multi-configuration Dirac–Fock method has been adopted by incorporating the ion sphere model potential as a modified interaction potential between the electron and the nucleus. For comparison purposes, parallel calculations have been carried out using the modified relativistic configuration interaction method. It is found that the transition energies corresponding to principal quantum number conserving transitions (Δn = 0) are blue shifted, whereas they are redshifted for the transitions where the principal quantum number is not conserved (Δn ≠ 0). The variation of transition probabilities and weighted oscillator strengths with free electron densities has also been studied. The present results should be advantageous in the modeling and diagnostics of astrophysical and laboratory plasmas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.