Abstract

AbstractStructural imperfections of 2D crystals such as point vacancies and grain boundaries (GBs) have considerable impacts on their chemical-physical properties. Here we study the atomic structure and dynamics of defects and GBs in monolayer Pd2Se3 using annular dark field scanning transmission electron microscopy (ADF-STEM). The Pd2Se3 monolayers are reproducibly created by thermally induced phase transformation of few-layered PdSe2 films in an in-situ heating holder in the TEM to promote Se loss. Diverse point vacancies, one-dimensional (1D) defects, GBs and defect ring complexes are directly observed in monolayer Pd2Se3, which show a series of dynamics triggered by electron beam. High mobility of vacancies leads to self-healing of point vacancies by migration to the edge and subsequent edge etching under the beam. Specific defects are stabilized by Se–Se bonds, which shift in a staggered way to buffer strain, forming a wave-like 1D defect. Bond rotations are also observed and play an important role in defect and GB dynamics in Pd2Se3 during vacancy production. The GBs form in a meandering pathway and migrate by a sequence of Se–Se bond rotations without large scale vacancy formation. In the GB corners and tilted GBs, other highly symmetric vacancy defects also occur to adapt to the orientation change. These results give atomic level insights into the defects and GBs in Pd2Se3 2D monolayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.