Abstract

Oxide thin films with perovskite structures possess multifunctional properties, while defects in the films usually have significant influences on their physical properties. Here, the atomic structure and chemistry of a[100] dislocation cores in epitaxial La2/3Sr1/3MnO3 films were investigated by aberration-corrected scanning transmission electron microscopy combining with atomically resolved electron energy-loss spectroscopy imaging. The results demonstrated an edge dislocation terminated with Mn columns and significant nonstoichiometry at the dislocation core region. Quantitative analysis using core-loss spectrum indicates that La/Mn and O/Mn ratios are decreased at the dislocation core. Antisite defects with Mn ions at La-sites were directly determined at the dislocation cores with electron energy-loss spectroscopy. The structure of the dislocation core is discussed on the basis of high-angle annular dark-field imaging and electron energy loss spectroscopy results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call