Abstract
We derive scaling laws for the spin decoherence of neutral atoms trapped near conducting and superconducting plane surfaces. A result for thin films sheds light on the measurement of Y. J. Lin, I. Teper, C. Chin, and V. Vuleti\ifmmode \acute{c}\else \'{c}\fi{} [Phys. Rev. Lett. 92, 050404 (2004)]. Our calculation is based on a quantum-theoretical treatment of electromagnetic radiation near metallic bodies [P. K. Rekdal, S. Scheel, P. L. Knight, and E. A. Hinds, Phys. Rev. A 70, 013811 (2004)]. We show that there is a critical atom-surface distance that maximizes the spin relaxation rate and we show how this depends on the skin depth and thickness of the metal surface. In the light of this impedance-matching effect we discuss the spin relaxation to be expected above a thin superconducting niobium layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.