Abstract

In a non-reciprocal optical amplifier, gain depends on whether the light propagates forwards or backwards through the device. Typically, one requires either the magneto-optical effect, temporal modulation or optical nonlinearity to break reciprocity. By contrast, here we demonstrate non-reciprocal amplification of fibre-guided light using Raman gain provided by spin-polarized atoms that are coupled to the nanofibre waist of a tapered fibre section. The non-reciprocal response originates from the propagation-direction-dependent local polarization of the nanofibre-guided mode in conjunction with polarization-dependent atom–light coupling. We show that this novel mechanism can also be implemented without an external magnetic field and that it allows us to fully control the direction of amplification via the atomic spin state. Our results may simplify the construction of complex optical networks. Moreover, by using other suitable quantum emitters, our scheme could be implemented in photonic integrated circuits and circuit quantum electrodynamics. Researchers demonstrate non-reciprocal amplification of nanofibre-guided light using Raman gain provided by nearby spin-polarized atoms. The direction of amplification can be controlled via the atomic spin state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.