Abstract

Samples loaded as MnxNi2Zn11−x (x = 0.1–5) were synthesized using conventional high-temperature solid-state techniques and characterized using X-ray diffraction, neutron powder diffraction, and energy dispersive X-ray spectroscopy. A Hume-Rothery-type mechanism was applied, following the rigid band model, to rationalize the electronic stability of these phases. This shows that at low Mn substitution for Zn, there is a structural preference for Mn atoms to be farthest apart within the same cluster, but that with increasing Mn concentration, there is a favorability in maximizing shortest Mn–Mn contacts between adjacent clusters of the γ-brass-type structure. The properties involving temperature-dependent zero-field-cooled (ZFC) and field-cooled (FC) magnetization, susceptibility, M(H) hysteresis curves, thermoremanent magnetization, and memory effect were studied for Mn1.5Ni2Zn9.5. A spin glass state has been observed below the transition temperature of ∼58.5 K, which originates predominately from the disordered substitution of Mn for Zn atoms in the inner tetrahedral and octahedral shells of the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.