Abstract
The recent experimental observation of dissipation-induced structural instability provides new opportunities for exploring the competition mechanism between stationary and nonstationary dynamics [Science 366, 1496 (2019)]. In that study, two orthogonal quadratures of cavity field are coupled to two different Zeeman states of a spinor Bose-Einstein condensate (BEC). Here we propose a novel scheme to couple two density-wave degrees of freedom of a BEC to two quadratures of the cavity field. Being drastically different from previous studies, the light-matter quadratures coupling in our model is endowed with a tunable coupling angle. Apart from the uniform and self-organized phases, we unravel a dynamically unstable state induced by the cavity dissipation. Interestingly, the dissipation defines a particular coupling angle, across which the instabilities disappear. Moreover, at this critical coupling angle, one of the two atomic density waves can be independently excited without affecting one another. It is also found that our system can be mapped into a reduced three-level model under the commonly used low-excitation-mode approximation. However, the effectiveness of this approximation is shown to be broken by the dissipation nature for some special system parameters, hinting that the low-excitation-mode approximation is insufficient in capturing some dissipation-sensitive physics. Our work enriches the quantum simulation toolbox in the cavity-quantum-electrodynamics system and broadens the frontiers of light-matter interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.