Abstract

One of the most appealing topics in the study of metal-organic networks is the growth mechanism. However, its study is still considered a significant challenge. Herein, using scanning tunneling microscopy, the growth mechanisms of metal-alkynyl networks on Ag(111) and Au(111) surfaces were investigated at the atomic scale. During the reaction of 1,3,5-tris(chloroethynyl)benzene on Ag(111), honeycomb Ag-alkynyl networks formed at 393 K, and only short chain intermediates were observed. By contrast, the same precursor formed honeycomb Au-alkynyl networks on Au(111) at 503 K. Progression annealing led to a stepwise evolution process, in which the sequential activation of three Cl-alkynyl bonds led to the formation of dimers, zigzag chains, and novel chiral networks as the intermediates. Moreover, density functional theory calculations indicate that chlorine atoms are crucial in assisting the breakage of metal-alkynyl bonds to form Cl-metal-alkynyl, which guarantees the reversibility of the break/formation equilibration as the key to forming regular large-scale organometallic networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call