Abstract

Two many-body interatomic potentials for the atomistic simulation of radiation effects in the Fe-Cr system have been recently proposed. In the present work, these potentials are used to calculate the diffusivity of single self-interstitial atoms (SIA) in an α-Fe matrix with randomly distributed chromium atoms, by means of classical molecular dynamics (MD). The main difference between the two potentials used consists in a different prediction of the most stable interstitial configuration in Fe and Fe-Cr. The mechanisms of diffusion in pure bcc iron and in Fe-Cr alloys of different concentrations are analyzed and a slowing down of SIA motion caused by crowdion defocussing and binding energy of SIA with solute atoms is found in the alloy. The actual diffusion coefficient of SIA in concentrated alloys is expected to be concentration dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.