Abstract
A local electrode atom probe has been employed to trace the onset of Cu clustering followed by their coarsening and subsequent growth upon rapid (10s) annealing of an amorphous Fe73.5Si15.5Cu1Nb3B7 alloy. It has been found that the clustering of Cu atoms introduces heterogeneities in the amorphous matrix, leading to the formation of Fe rich regions which crystallizes pseudo-homogeneously into Fe–Si nanocrystals upon annealing. In this paper, we present the data treatment method that allows for the visualization of these different phases and to understand their morphology while still quantifying them in terms of their size, number density and volume fraction. The crystallite size of Fe–Si nanocrystals as estimated from the atom probe data are found to be in good agreement with other complementary techniques like XRD and TEM, emphasizing the importance of this approach towards accurate structural analysis. In addition, a composition driven data segmentation approach has been attempted to determine and distinguish nanocrystalline regions from the remaining amorphous matrix. Such an analysis introduces the possibility of retrieving crystallographic information from extremely fine (2–4nm sized) nanocrystalline regions of very low volume fraction (< 5Vol%) thereby providing crucial in-sights into the chemical heterogeneity induced crystallization process of amorphous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.