Abstract

AbstractAtomistic simulations are used to study cross slip of a single screw dislocation as well as screw dislocation dipole annihilation in Cu. A configuration space path techniquex is applied to determine, without presumptions about the saddle point, the minimum energy path of transition for cross slip. The cross slip process is that proposed by Friedel and Escaig, and the energy of the in-plane constriction initiating cross slip is determined. A minimum stable dipole height much smaller than previously inferred from experimental studies is found. Relaxed screw dislocation dipoles adopt a skew configuration due to the anisotropy of Cu. The path technique is applied to investigate annihilation of stable screw dislocation dipoles, and the energy barrier for annihilation as a function of dipole height is determined for both homogeneous and heterogeneous cross slip leading to the annihilation. The results might be used as quantitative input into meso-/macro-scopical modelling approaches which rely on parameters deduced from either simulation or experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call